Increasing systematicity leads to better selection decisions: Evidence from a computer paradigm for evaluating selection tools

نویسندگان

  • Martin Bäckström
  • Fredrik Björklund
چکیده

A computerized paradigm was created to allow for testing in the laboratory whether increasing systematicity helps the recruiter make better selection decisions. Participants were introduced to the job and the applicants on the computer screen and asked to select who they thought should be considered for the job and who should not. Level of systematicity, i.e. the extent to which the recruitment is methodical and uses prepared tools, was manipulated between subjects. Depending on experimental condition participants were helped by means of a tool for extracting judgment criteria (job analysis) and a tool for making judgments related to selected criteria (including calculation of a final score). The general prediction that increased systematicity leads to the selection of more qualified candidates was supported by the results, particularly when the motivation to put time and effort into the task was higher. The results support the claim from Industrial/Organizational psychologists that systematicity is a desirable characteristic in selection processes. The fact that increasing systematicity led to better selection decisions in a controlled laboratory experiment, along with process-related measures, suggests that this kind of paradigm could be useful when evaluating new tools for improving selection decisions, before they are tested in large (and costly) field studies of actual personnel selection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

A New Model for Best Customer Segment Selection Using Fuzzy TOPSIS Based on Shannon Entropy

In today’s competitive market, for a business firm to win higher profit among its rivals, it is of necessity to evaluate, and rank its potential customer segments to improve its Customer Relationship Management (CRM). This brings the importance of having more efficient decision making methods considering the current fast growing information era. These decisions usually involve several criteria,...

متن کامل

A procedure for Web Service Selection Using WS-Policy Semantic Matching

In general, Policy-based approaches play an important role in the management of web services, for instance, in the choice of semantic web service and quality of services (QoS) in particular. The present research work illustrates a procedure for the web service selection among functionality similar web services based on WS-Policy semantic matching. In this study, the procedure of WS-Policy publi...

متن کامل

IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF

Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017